Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds
نویسندگان
چکیده
The aim of the present paper is to bridge the gap between the Bakry-Émery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds. We start from a strongly local Dirichlet form E admitting a Carré du champ Γ in a Polish measure space (X,m) and a canonical distance dE that induces the original topology of X. We first characterize the distinguished class of Riemannian Energy measure spaces, where E coincides with the Cheeger energy induced by dE and where every function f with Γ(f) ≤ 1 admits a continuous representative. In such a class we show that if E satisfies a suitable weak form of the Bakry-Émery curvature dimension condition BE(K,∞) then the metric measure space (X, d,m) satisfies the Riemannian Ricci curvature bound RCD(K,∞) according to [5], thus showing the equivalence of the two notions. Two applications are then proved: the tensorization property for Riemannian Energy spaces satisfying the Bakry-Émery condition BE(K,N) (and thus the corresponding one for RCD(K,∞) spaces without assuming nonbranching) and the stability of BE(K,N) with respect to Sturm-Gromov-Hausdorff convergence.
منابع مشابه
Sharp Geometric and Functional Inequalities in Metric Measure Spaces with Lower Ricci Curvature Bounds
Abstract. For metric measure spaces verifying the reduced curvature-dimension condition CD∗(K,N) we prove a series of sharp functional inequalities under the additional assumption of essentially nonbranching. Examples of spaces entering this framework are (weighted) Riemannian manifolds satisfying lower Ricci curvature bounds and their measured Gromov Hausdorff limits, Alexandrov spaces satisfy...
متن کاملRICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملCurvature and transport inequalities for Markov chains in discrete spaces
We study various transport-information inequalities under three di erent notions of Ricci curvature in the discrete setting: the curvature-dimension condition of Bakry and Émery [4], the exponential curvature-dimension condition of Bauer et al. [6] and the coarse Ricci curvature of Ollivier [38]. We prove that under a curvature-dimension condition or coarse Ricci curvature condition, an L1 tran...
متن کاملSome Geometric Properties of the Bakry-émery-ricci Tensor
The Bakry-Émery tensor gives an analog of the Ricci tensor for a Riemannian manifold with a smooth measure. We show that some of the topological consequences of having a positive or nonnegative Ricci tensor are also valid for the Bakry-Émery tensor. We show that the Bakry-Émery tensor is nondecreasing under a Riemannian submersion whose fiber transport preserves measures up to constants. We giv...
متن کاملRicci curvature , entropy and optimal transport – Summer School in Grenoble 2009 – ‘ Optimal Transportation : Theory and Applications
These notes are the planned contents of my lectures. Some parts could be only briefly explained or skipped due to the lack of time or possible overlap with other lectures. The aim of these lectures is to review the recent development on the relation between optimal transport theory and Riemannian geometry. Ricci curvature is the key ingredient. Optimal transport theory provides a good character...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012